首页> 外文期刊>International journal of computer vision and iImage processing >Human Face Recognition using Gabor Based Kernel Entropy Component Analysis
【24h】

Human Face Recognition using Gabor Based Kernel Entropy Component Analysis

机译:基于Gabor核熵成分分析的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the authors present a novel Gabor wavelet based Kernel Entropy Component Analysis (KECA) method by integrating the Gabor wavelet transformation (GWT) of facial images with the KECA method for enhancedface recognition performance. Firstly, from the Gaborwavelet transformed images the most important discriminative desirable facial features characterized by spatial frequency, spatial locality and orientation selectivity to cope with the variations due to illumination and facial expression changes were derived. After that KECA, relating to the Renyi entropy is extended to include cosine kernel function. The KECA with the cosine kernels is then applied on the extracted most important discriminating feature vectors of facial images to obtain only those real kernel ECA eigenvectors that are associated with eigenvalues having positive entropy contribution. Finally, these real KECA features are used for image classification using the L_1, L_2 distance measures; the Mahalanobis distance measure and the cosine similarity measure. The feasibility of the Gabor based KECA method with the cosine kernel has been successfully tested on both frontal and pose-angled face recognition, using datasets from the ORL, FRAV2D, and the FERET database.
机译:在本文中,作者提出了一种新的基于Gabor小波的核熵成分分析(KECA)方法,该方法将人脸图像的Gabor小波变换(GWT)与KECA方法相结合,以增强人脸识别性能。首先,从Gaborwavelet变换的图像中,得出最重要的判别性面部特征,其特征在于空间频率,空间局部性和方向选择性,以应对照明和面部表情变化引起的变化。此后,与仁义熵有关的KECA扩展为包括余弦核函数。然后将具有余弦核的KECA应用于提取的面部图像最重要的区分特征向量,以仅获取那些与具有正熵贡献的特征值相关联的真实核ECA特征向量。最后,这些真实的KECA特征用于使用L_1,L_2距离度量进行图像分类。马氏距离测度和余弦相似度测度。使用来自ORL,FRAV2D和FERET数据库的数据集,已经成功测试了基于Gabor的KECA方法和余弦核的可行性,并且已在正面和姿势倾斜的面部识别上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号