首页> 外文期刊>International Journal of Computer Systems Science & Engineering >An empirical evaluation for feature selection methods in phishing email classification
【24h】

An empirical evaluation for feature selection methods in phishing email classification

机译:网络钓鱼电子邮件分类中的特征选择方法的经验评估

获取原文
获取原文并翻译 | 示例

摘要

Phishing email detection is highly dependent on the accuracy of anti-phishing classifiers. Classifiers that use Machine-Learning techniques achieve highest phishing email classification accuracy results according to the literature. Using effective features in Machine-Learning is a critical step in raising classifiers detection accuracy. This study aims at evaluating a number of feature subset selection methods as they relate to the phishing email classification domain. In order to perform this study, a total of 47 classification features were constructed as previously proposed in the literature. The primary outcome of this study is that the Wrapper evaluator and the Best-First: Forward searching method resulted in finding the most effective features subset among all other evaluated methods. This study addresses the gap that exists between fragmented literature items by evaluating them together following common evaluation metrics. Using the best performing feature selection method, an effective features subset was found among the 47 previously proposed features, which resulted in a highly accurate anti-phishing email classifier with an f score of 99.396%. This also shows that a highly competitive anti-phishing email classifier can still be constructed by only using existing Machine-Learning techniques and previously proposed features if an effective features subset is found.
机译:仿冒电子邮件检测高度依赖于反仿冒分类器的准确性。根据文献,使用机器学习技术的分类器可实现最高的网络钓鱼电子邮件分类准确性结果。在机器学习中使用有效功能是提高分类器检测准确性的关键步骤。这项研究旨在评估与钓鱼电子邮件分类域相关的多种功能子集选择方法。为了进行这项研究,按照文献先前提出的方法,共构建了47种分类特征。这项研究的主要结果是,包装器评估程序和“最佳第一:正向搜索”方法导致在所有其他评估方法中找到最有效的特征子集。这项研究通过按照共同的评估指标对零散的文学作品进行评估,解决了零散的文学作品之间存在的差距。使用性能最佳的特征选择方法,在先前提出的47个特征中找到了有效的特征子集,从而得出了f得分为99.396%的高精度反网络钓鱼电子邮件分类器。这也表明,如果找到了有效的功能子集,仍然可以仅使用现有的机器学习技术和先前提出的功能来构建具有高度竞争力的反网络钓鱼电子邮件分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号