首页> 外文期刊>International Journal of Computer Systems Science & Engineering >Analysis and Application of the Spatio-temporal Feature in Wind Power Prediction
【24h】

Analysis and Application of the Spatio-temporal Feature in Wind Power Prediction

机译:时空特征在风电预测中的分析与应用

获取原文
获取原文并翻译 | 示例

摘要

The spatio-temporal feature with historical wind power information and spatial information can effectively improve the accuracy of wind power prediction, but the role of the spatio-temporal feature has not yet been fully discovered. This paper investigates the variance of the spatio-temporal feature. Based on this, a hybrid machine learning method for wind power prediction is designed. First, the training set is divided into several groups according to the variance of the input pattern, and then each group is used to train one or more predictors respectively. Multiple machine learning methods, such as the support vector machine regression and the decision tree, are used in the proposed method. Second, all the trained predictors are adopted to make predictions for a sample, and the results generated from these predictors will be combined by an optimized combination method based on the variance. The experimental results based on the NREL dataset show that the method adopted in this paper can achieve a better performance than the stage-of-the-art approaches
机译:具有历史风能信息和空间信息的时空特征可以有效地提高风能预测的准确性,但时空特征的作用尚未得到充分发现。本文研究了时空特征的方差。基于此,设计了一种用于风力发电预测的混合机器学习方法。首先,根据输入模式的变化将训练集分为几组,然后使用每组分别训练一个或多个预测变量。提出的方法采用了支持向量机回归和决策树等多种机器学习方法。其次,采用所有训练有素的预测因子对样本进行预测,然后将基于这些方差的优化组合方法对这些预测因子产生的结果进行组合。基于NREL数据集的实验结果表明,本文所采用的方法比现有方法具有更好的性能。

著录项

  • 来源
  • 作者单位

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300350, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300350, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China|Tianjin Key Lab Adv Networking, Tianjin 300350, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300350, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China|Tianjin Key Lab Adv Networking, Tianjin 300350, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China|Tianjin Key Lab Adv Networking, Tianjin 300350, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    spatio-temporal feature; power wind prediction; variance; grouping; multi-predictors;

    机译:时空特征;风力预测;方差;分组;多指标;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号