首页> 外文期刊>International journal of computer science and network security >Parallel Query Processing in a Cluster using MPI and File System Caching
【24h】

Parallel Query Processing in a Cluster using MPI and File System Caching

机译:使用MPI和文件系统缓存的集群中的并行查询处理

获取原文
获取原文并翻译 | 示例

摘要

Data intensive applications that rely heavily on huge databases waste a lot of time in searching and retrieval especially if there is a single server retrieving data from the database. This paper proposes a Beowulf cluster for fast query processing by distributing the database horizontally over nodes through a load balancing act. A mathematical model is proposed to optimally partition data among the nodes. Communication between nodes is to be achieved through MPI(Message Passing Interface). A file system cache has been created to further decrease the query processing time. Caching is performed with the help of Apache Lucene API. Results would be retrieved depending upon a cache hit or miss. The size of the cache would be monitored and if it exceeds a threshold value deletion operation would be performed by applying the LRU(least recently used) algorithm. Through experimental results we have found that caching reduces the query processing time substantially. We can further improve the result by performing query optimization by indexing the attributes in complex queries.rnThis approach has reduced the query processing time manifold as compared to a single overloaded server. With networks growing in speed and highly available secondary storage it is expected to perform even better in future.
机译:严重依赖大型数据库的数据密集型应用程序会浪费大量时间进行搜索和检索,尤其是当只有一台服务器从数据库中检索数据时。本文提出了一种Beowulf集群,该集群通过通过负载均衡行为将数据库水平分布在节点上来进行快速查询处理。提出了一种数学模型以在节点之间最佳地分配数据。节点之间的通信将通过MPI(消息传递接口)来实现。已创建文件系统缓存,以进一步减少查询处理时间。缓存是在Apache Lucene API的帮助下执行的。将根据缓存命中或未命中来检索结果。将监视高速缓存的大小,如果高速缓存的大小超过阈值,则将通过应用LRU(最近最少使用)算法来执行删除操作。通过实验结果,我们发现缓存大大减少了查询处理时间。我们可以通过对复杂查询中的属性建立索引来执行查询优化,从而进一步改善结果。与单个过载的服务器相比,该方法减少了查询处理时间。随着网络速度的提高和辅助存储的高可用性,预计将来性能会更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号