首页> 外文期刊>International journal of computer science and network security >Efficient Forest Fire Detection System- A Spatial Data Mining and Image Processing Based Approach
【24h】

Efficient Forest Fire Detection System- A Spatial Data Mining and Image Processing Based Approach

机译:高效的森林火灾探测系统-一种基于空间数据挖掘和图像处理的方法

获取原文
获取原文并翻译 | 示例

摘要

The drastic ascent in the volume of spatial data owes its growth to the technical advancements in technologies that aid in spatial data acquisition, mass storage and network interconnection. Thus the necessity for automated detection of spatial knowledge from voluminous spatial data arises. Fire plays a vital role in a majority of the forest ecosystems. Forest fires arc serious ecological threats that result in deterioration of economy and environment apart from jeopardizing human lives. Thus forest fires need to be detected as early as possible in order to inhibit from being spread. This paper intends to detect forest fires from the forest spatial data. The approach makes use of spatial data mining, image processing and artificial intelligence techniques for the detection of fires. A fuzzy rule base is formed for the detection of fires, from the spatial data with the presence of fires. The digital images from the spatial data are converted to YCbCr color space and then segmented by employing anisotropic diffusion to identify fire regions. Subsequently, a fuzzy set is created with the color space values of the fire regions. Further, fuzzy rales are derived on basis of fuzzy logic reasoning. Extensive experimental assessment on publicly available spatial data illustrated that the proposed approach efficiently detects forest fires.
机译:空间数据量的急剧增长归功于其技术的进步,这些技术有助于空间数据采集,海量存储和网络互连。因此,出现了从大量空间数据中自动检测空间知识的必要性。火灾在大多数森林生态系统中起着至关重要的作用。森林火灾是严重的生态威胁,除了危害人类生命外,还导致经济和环境恶化。因此,为了防止火势蔓延,需要尽早发现森林大火。本文旨在从森林空间数据中检测森林火灾。该方法利用空间数据挖掘,图像处理和人工智能技术来检测火灾。建立了模糊规则库,用于根据存在火灾的空间数据检测火灾。来自空间数据的数字图像被转换为​​YCbCr颜色空间,然后通过采用各向异性扩散来识别火场区域进行分割。随后,使用火区域的颜色空间值创建模糊集。此外,基于模糊逻辑推理得出模糊规则。对可公开获得的空间数据进行的广泛实验评估表明,该方法可以有效地检测森林大火。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号