首页> 外文期刊>International journal of computer science and network security >Mobility Prediction of Mobile Users in Mobile Environment Using Knowledge Grid
【24h】

Mobility Prediction of Mobile Users in Mobile Environment Using Knowledge Grid

机译:使用知识网格的移动环境中移动用户的移动性预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new distributed algorithm named KMPM (Knowledge Grid Based Mobility Pattern Mining) for mining next location of a mobile user in a Personal Communication Systems (PCS) network. The moving logs of mobile users in mobile computing environment are stored in the grid node located in different locations. The generated moving logs are used for mining mobility patterns in a mobile computing system. The discovered location patterns can be used to provide various location based services to the mobile user by the application server in mobile computing environment. Data grid provides geographically distributed database for Computational Grid which implements (Knowledge Grid based Mobility Pattern Mining) KMPM algorithm. We built data grid system on a cluster of workstation using open source Globus Toolkit4.0 and Message Passing Interface extended with Grid Services (MPICH-G2). The experiments were conducted on different configurations and the computation time was recorded for each operation. We compared our result with various grid configurations and it shows a very good speedup.
机译:在本文中,我们提出了一种新的分布式算法,称为KMPM(基于知识网格的移动模式挖掘),用于挖掘个人通信系统(PCS)网络中移动用户的下一个位置。移动计算环境中移动用户的移动日志存储在不同位置的网格节点中。生成的移动日志用于挖掘移动计算系统中的移动性模式。发现的位置模式可用于在移动计算环境中由应用服务器向移动用户提供各种基于位置的服务。数据网格为计算网格提供了地理上分布的数据库,该数据库实现了(基于知识网格的移动性模式挖掘)KMPM算法。我们使用开放源代码Globus Toolkit4.0和扩展了网格服务(MPICH-G2)的消息传递接口在工作站集群上构建了数据网格系统。在不同的配置下进行了实验,并记录了每个操作的计算时间。我们将我们的结果与各种网格配置进行了比较,它显示出非常好的加速效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号