首页> 外文期刊>International journal of computer science and network security >WKTD: A Novel Algorithm for Reducing Search Time Using Data Mining Mechanism
【24h】

WKTD: A Novel Algorithm for Reducing Search Time Using Data Mining Mechanism

机译:WKTD:一种使用数据挖掘机制减少搜索时间的新颖算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we will present an A Novel Algorithm for Reducing Search Time Using Data Mining Mechanism. This method is achieved when we create a threshold detector (TD) by which we may conduct clustering so that in data base accumulation, we may present a new competence function by portioning max and min point which produce specific intervals in the information accumulation. In WKTD algorithm, by evaluating parameters used in data collection in the data base of Iranian Workers Association and Oil Industry Investment Company, the recommended algorithm can be used for searching the abovementioned data bases with a high record of estimated costs which are obtained from data collection. Delays considered in searching banks also have been assessed and sweep time and return time of task search have been calculated using competence function. In order to reduce repetitive data in the data base, we were able to present a new method using the threshold detector which enables us to create repetitive data by clustering. Compared with basic K-Means and WKMSD, the recommended algorithm has a higher performance and dependability and is more reliable than previous algorithms.
机译:在本文中,我们将提出一种使用数据挖掘机制减少搜索时间的新算法。通过创建阈值检测器(TD)可以进行聚类,从而在数据库累积中,我们可以通过分配最大点和最小点来提供新的能力函数,从而在信息累积中产生特定的间隔,从而实现了该方法。在WKTD算法中,通过评估伊朗工人协会和石油工业投资公司数据库中用于数据收集的参数,可以将推荐的算法用于搜索上述数据库,这些数据库具有从数据收集获得的估计成本的高记录。还评估了搜索库中考虑的延迟,并使用能力函数计算了任务搜索的扫描时间和返回时间。为了减少数据库中的重复数据,我们能够提出一种使用阈值检测器的新方法,该方法使我们能够通过聚类来创建重复数据。与基本的K-Means和WKMSD相比,推荐的算法具有更高的性能和可靠性,并且比以前的算法更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号