首页> 外文期刊>International journal of computer science and network security >Image Denoising Based on Wavelet for IR Images Corrupted by Gaussian, Poisson & Impulse Noises
【24h】

Image Denoising Based on Wavelet for IR Images Corrupted by Gaussian, Poisson & Impulse Noises

机译:基于小波的高斯,泊松和脉冲噪声对红外图像的图像降噪

获取原文
获取原文并翻译 | 示例

摘要

Image denoising has remained a fundamental problem in various applications of image processing. This paper proposes a new denoising algorithm on Cohen-Daubechies-Feauveau wavelets (CDF 9/7) wavelet transform. We first applied the lifting structure to improve the drawbacks of the wavelet transform where conventional wavelet transforms and other classical decompositions seem to be restricted or limited to handle. Our proposed algorithm in this paper is very efficient in estimating and reducing noises for the contaminated images by the most popular noises such as Gaussian noise, Poisson noise and impulse (salt& pepper) noise. In this algorithm, the noisy image is first decomposed into many levels obtained from different frequency bands and then to be found the best decomposition level for the noise removal. Experimental results on several conditions are investigated for infrared images as study cases under our proposed algorithm. They are very impressive, for example under the noise with σ = 0.2 and density = 20%, for mean square error (MSE) our method decreasing 83%; peak signal to noise ratio (PSNR) increasing 98% and mean of structural similarity (MSSIM) increasing 95%, multi-scale structural similarity (MSSSIM) enhancing 93%, Feature similarity (FSIM) index growing 98.8%, Riesz-transform based Feature Similarity index (RFSIM) increasing 83.4% with the same conditions in other methods. Obviously, the experimental results shown for our proposed algorithm are significantly superior to other related methods.
机译:在图像处理的各种应用中,图像去噪仍然是基本问题。本文提出了一种针对Cohen-Daubechies-Feauveau小波(CDF 9/7)小波变换的去噪新算法。我们首先应用提升结构来改善小波变换的缺点,其中常规小波变换和其他经典分解似乎被限制或限制为处理。我们提出的算法在通过最流行的噪声(例如高斯噪声,泊松噪声和脉冲(盐和胡椒)噪声)来估计和减少受污染图像的噪声方面非常有效。在该算法中,首先将噪声图像分解为从不同频带获得的许多级别,然后找到用于去除噪声的最佳分解级别。在我们提出的算法下,研究了几种条件下的红外图像实验结果,作为研究案例。它们非常令人印象深刻,例如在噪声为σ= 0.2和密度= 20%的情况下,对于均方误差(MSE),我们的方法降低了83%;峰值信噪比(PSNR)增加98%,结构相似性(MSSIM)平均值增加95%,多尺度结构相似性(MSSSIM)增强93%,特征相似性(FSIM)指数增加98.8%,基于Riesz变换的特征在其他条件相同的情况下,相似性指标(RFSIM)增加83.4%。显然,我们提出的算法显示的实验结果明显优于其他相关方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号