首页> 外文期刊>International journal of computer mathematics >Two modified spectral conjugate gradient methods and their global convergence for unconstrained optimization
【24h】

Two modified spectral conjugate gradient methods and their global convergence for unconstrained optimization

机译:无约束优化的两种改进谱共轭梯度法及其全局收敛性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two modified spectral conjugate gradient methods which satisfy sufficient descent property are developed for unconstrained optimization problems. For uniformly convex problems, the first modified spectral type of conjugate gradient algorithm is proposed under the Wolfe line search rule. Moreover, the search direction of the modified spectral conjugate gradient method is sufficiently descent for uniformly convex functions. Furthermore, according to the Dai-Liao's conjugate condition, the second spectral type of conjugate gradient algorithm can generate some sufficient decent direction at each iteration for general functions. Therefore, the second method could be considered as a modification version of the Dai-Liao's algorithm. Under the suitable conditions, the proposed algorithms are globally convergent for uniformly convex functions and general functions. The numerical results show that the approaches presented in this paper are feasible and efficient.
机译:本文针对无约束优化问题,开发了两种满足足够下降特性的改进谱共轭梯度方法。对于均匀凸问题,在沃尔夫线搜索规则下提出了共轭梯度算法的第一种改进谱类型。此外,改进的频谱共轭梯度法的搜索方向对于均匀凸函数具有足够的下降性。此外,根据戴辽的共轭条件,第二频谱类型的共轭梯度算法可以在每次迭代时为通用函数生成足够的体面方向。因此,第二种方法可以视为戴辽算法的修改版本。在适当的条件下,对于均匀凸函数和一般函数,所提出的算法是全局收敛的。数值结果表明,本文提出的方法是可行和有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号