首页> 外文期刊>International journal of computer mathematics >Human action representation using pyramid correlogram of oriented gradients on motion history images
【24h】

Human action representation using pyramid correlogram of oriented gradients on motion history images

机译:使用运动历史图像上定向梯度的金字塔相关图的人体动作表示

获取原文
获取原文并翻译 | 示例

摘要

The representation of human actions in video sequences is one of the key steps in action classification and recognition, performances of which are greatly dependent on the distinctiveness and robustness of the descriptors used for representation. In this paper, a novel descriptor, named pyramid correlogram of oriented gradients (PCOG), is presented for feature representation. PCOG, combined with the motion history images, captures both shape and spatial layout of the motion and therefore gives more effective and powerful representation for human actions and can be used for the detection and recognition of a variety of actions. Experiments on challenging action data sets show that PCOG performs significantly better than the histogram of oriented gradients both as a global descriptor and as a local descriptor.
机译:视频序列中人类动作的表示是动作分类和识别的关键步骤之一,其性能很大程度上取决于用于表示的描述符的独特性和鲁棒性。在本文中,提出了一种新颖的描述符,称为定向梯度金字塔相关图(PCOG),用于特征表示。 PCOG与运动历史图像相结合,可以捕获运动的形状和空间布局,因此可以更有效,更有效地表示人类动作,并且可以用于检测和识别各种动作。在具有挑战性的动作数据集上进行的实验表明,无论是全局描述符还是局部描述符,PCOG的性能均明显优于定向梯度的直方图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号