首页> 外文期刊>International Journal of Computer Mathematics: Computer Systems Theory >Strong matching preclusion problem of the folded Petersen cube
【24h】

Strong matching preclusion problem of the folded Petersen cube

机译:折叠的Petersen立方体的强匹配排除问题

获取原文
获取原文并翻译 | 示例

摘要

A strong matching preclusion set in a graph is a set of vertices and edges whose removal leaves the graph with no perfect matchings or almost perfect matchings. The strong matching preclusion number of a graph is the minimum cardinality of a strong matching preclusion set. The notion of strong matching preclusion was introduced by Park and Ihm as an extension of the matching preclusion problem, where only edges may be deleted. The folded Petersen cubes FPQ(n,k) are a class of interconnection networks, formed by iterated Cartesian products of the well-known Petersen graph and the complete graph K_2, which possess many desirable properties. In this paper, we find the strong matching preclusion number of the folded Petersen cubes and categorize all optimal strong matching preclusion sets of these graphs. To do so, we develop and utilize more general results related to strong matching preclusion for graphs formed by Cartesian products of particular graphs.
机译:图中的强匹配排除项集是一组顶点和边,其移除会导致图没有完美匹配或几乎没有完美匹配。图的强匹配排除数是强匹配排除集的最小基数。 Park和Ihm引入了强匹配排除概念,作为匹配排除问题的扩展,其中仅可以删除边缘。折叠的Petersen立方体FPQ(n,k)是一类互连网络,它由众所周知的Petersen图和完整图K_2的迭代笛卡尔积形成,它们具有许多理想的特性。在本文中,我们找到了折叠后的Petersen多维数据集的强匹配排除数,并对这些图的所有最佳强匹配排除集进行了分类。为此,我们针对特定图的笛卡尔积形成的图,开发和利用了与强匹配排除相关的更一般的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号