首页> 外文期刊>International journal of computational vision and robotics >A high-quality frame rate up-conversion technique for Super SloMo
【24h】

A high-quality frame rate up-conversion technique for Super SloMo

机译:超级SLOMO的高质量帧速率上转换技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose several methods to improve Super SloMo, a deep learning-based frame rate up-conversion technique for the temporal quality improvement of video. In the proposed methods, the training dataset and hyper-parameter are changed and trained to obtain optimal results while maintaining the existing network structure of Super SloMo. The first method improves the cognition of images when trained with the validation set of characteristics similar to the training set. The second method reduces video loss in all validation sets when trained by adjusting the hyper-parameters of the error function value. The experimental results show that the two proposed methods improved the peak signal-to-noise ratio and the mean of the structural similarity index by 0.11 dB and 0.033% with the specialised training set and by 0.37 dB and 0.077% via adjusting the reconstruction and warping loss parameters, respectively.
机译:在本文中,我们提出了几种改进超级Slomo的方法,是一种基于深度学习的帧速率上升技术,用于视频的时间质量改进。 在所提出的方法中,更改训练数据集和超参数,以接受培训,以获得最佳结果,同时保持超级Slomo的现有网络结构。 第一种方法通过与训练集的验证特性集进行训练,提高了图像的认知。 第二种方法通过调整误差函数值的超参数训练时,在所有验证集中减少视频丢失。 实验结果表明,两种提出的方法将峰值信噪比和结构相似性指数的平均值提高了0.11dB,通过专业训练集和0.37 dB,通过调整重建和翘曲0.37 dB和0.077% 损耗参数分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号