首页> 外文期刊>International journal of computational vision and robotics >An enhanced texture-based image retrieval approach with features selected from integration of feature extraction techniques
【24h】

An enhanced texture-based image retrieval approach with features selected from integration of feature extraction techniques

机译:一种增强的基于纹理的图像检索方法,具有选定的特征提取技术的集成功能

获取原文
获取原文并翻译 | 示例

摘要

Texture is vital in characterising images for effective content-based image retrieval. Integrating features from various feature extraction techniques improves the performance of decision system in comparison to individual techniques as it provides complimentary information as a whole. However, this integration creates a large feature vector which may contain irrelevant and redundant features and hence degrade the performance. Therefore, we propose a three-phase texture-based image retrieval approach for enhanced performance. In the first phase, pool of texture features from seven feature extraction techniques is created. In the second phase, some popular feature selection techniques are applied to this pool to obtain a reduced set of relevant and non-redundant features. In the third phase, three well-known distance measures are utilised to retrieve images based on the reduced features set. The performance of the proposed approach is evaluated on Brodatz dataset. The proposed approach outperforms individual feature extraction techniques.
机译:纹理在表征图像以实现有效的基于内容的图像检索的情况至关重要。与各种特征提取技术的集成功能提高了与各个技术相比的决策系统的性能,因为它提供了整体的互补信息。然而,该集成创建了一个大的特征向量,其可能包含无关紧要和冗余特征,因此降低性能。因此,我们提出了一种基于三相纹理的图像检索方法,以提高性能。在第一阶段,创建了七个特征提取技术的纹理特征池。在第二阶段,将一些流行的特征选择技术应用于该池以获得减少的相关和非冗余功能集。在第三阶段中,利用三种众所周知的距离测量来基于缩小的特征集检索图像。在Brodatz数据集中评估所提出的方法的性能。所提出的方法优于个体特征提取技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号