首页> 外文期刊>International journal of computational vision and robotics >Machine learning technique for object detection based on SURF feature
【24h】

Machine learning technique for object detection based on SURF feature

机译:基于SURF特征的机器学习技术用于目标检测

获取原文
获取原文并翻译 | 示例

摘要

Local features that based on interest points have received a great interest in computer vision field and they play an important role in many applications, such as object recognition, tracking, and image retrieval. These features have proven to be invariant against the geometric and photometric transformations and proven to be robust under different types of image disturbances. Matching technique is usually employed in this field to recognise the object. Yet, it is not suitable for some applications such as searching for an isolated object, part-based object recognition, and object categorisation. A model for object detection with an artificial neural network (ANN) to overcome such shortages is proposed. Two datasets are prepared to be used for learning; one for human faces and the other for the cars. Features are extracted using speeded-up robust feature (SURF). The proposed model is evaluated using two benchmark datasets, Caltech 101 and VOC2009. The obtained results are encouraging.
机译:基于兴趣点的局部特征已在计算机视觉领域引起了极大的兴趣,它们在许多应用程序中发挥了重要作用,例如对象识别,跟踪和图像检索。这些功能已证明对几何和光度变换不变,并且在不同类型的图像干扰下也很可靠。通常在该领域中采用匹配技术来识别物体。但是,它不适用于某些应用程序,例如搜索孤立的对象,基于零件的对象识别以及对象分类。提出了一种利用人工神经网络(ANN)进行目标检测的模型,以克服这种不足。准备了两个数据集用于学习。一个用于人脸,另一个用于汽车。使用加速的鲁棒特征(SURF)提取特征。使用两个基准数据集Caltech 101和VOC2009对提出的模型进行了评估。获得的结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号