首页> 外文期刊>International journal of computational vision and robotics >Weighted feature voting technique for content-based image retrieval
【24h】

Weighted feature voting technique for content-based image retrieval

机译:基于内容的图像检索的加权特征投票技术

获取原文
获取原文并翻译 | 示例

摘要

A content-based image retrieval process is used to retrieve most similar images to a query from a large database of images on the basis of extracted features. Matching measures are used to find similar images by measuring how the query features are close to the features of other images in the database. In this paper, a multi-features system is proposed which incorporates more than one feature in the retrieval process. The weights of these features are calculated based on the precision of each feature to reflect its importance in the retrieval process. These weights are used in a weighted feature voting technique to incorporate the role of each feature in extracting the relevant images. Also, different distance measures are used to get the highest precision of each feature. The results of applying the multi-features and multi-distances measures technique outperform other existing methods with accuracy 86.5% for Wang database, 86.5% for UW database and 85% for Caltech101 database.
机译:基于内容的图像检索过程用于根据提取的特征从大型图像数据库中检索与查询最相似的图像。匹配度量用于通过测量查询特征与数据库中其他图像的特征的接近程度来查找相似图像。本文提出了一种多特征系统,该系统在检索过程中包含多个特征。根据每个特征的精度计算这些特征的权重,以反映其在检索过程中的重要性。这些权重用于加权特征投票技术中,以合并每个特征在提取相关图像中的作用。同样,使用不同的距离度量来获得每个要素的最高精度。应用多特征和多距离测量技术的结果优于其他现有方法,Wang数据库的准确性为86.5%,UW数据库的准确性为86.5%,Caltech101数据库的准确性为85%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号