首页> 外文期刊>International journal of computational vision and robotics >Combination of domain knowledge and deep learning for sentiment analysis of short and informal messages on social media
【24h】

Combination of domain knowledge and deep learning for sentiment analysis of short and informal messages on social media

机译:结合领域知识和深度学习,对社交媒体上的简短消息和非正式消息进行情感分析

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis has been emerging recently as one of major natural language processing (NLP) tasks, with the increasing significance of social media channels for brands to observe user opinions about their products. In the previous work, we proposed to combine the typical deep learning techniques with domain knowledge. The combination is used for acquiring additional training data augmentation and a more reasonable loss function. However, there is a high volume of short and informal messages posted by users which makes the existing works suffer from many difficulties. In this work, we further improve our architecture, aiming to handle those problems, by various substantial enhancements, including negation-based data augmentation, transfer learning for word embeddings, combination of word-level embeddings and character-level embeddings, and using multitask learning technique for attaching domain knowledge rules in the learning process. Those enhancements help us to enjoy significant improvement in performance once experimenting on real datasets.
机译:情感分析最近已成为主要的自然语言处理(NLP)任务之一,随着社交媒体渠道对品牌观察用户对其产品的意见的重要性日益提高。在之前的工作中,我们建议将典型的深度学习技术与领域知识相结合。该组合用于获取其他训练数据增强和更合理的损失函数。然而,用户发布了大量的非正式消息,这使得现有作品遭受许多困难。在这项工作中,我们通过各种实质性增强来进一步改进我们的体系结构,以解决这些问题,包括基于求反的数据增强,单词嵌入的转移学习,单词级嵌入和字符级嵌入的组合以及使用多任务学习在学习过程中附加领域知识规则的技术。这些增强功能有助于我们在实际数据集上进行实验后,在性能上获得显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号