首页> 外文期刊>International journal of computational vision and robotics >Features selection for offline handwritten signature verification: state of the art
【24h】

Features selection for offline handwritten signature verification: state of the art

机译:离线手写签名验证的功能选择:最新技术

获取原文
获取原文并翻译 | 示例

摘要

This research comes out with an in-depth review of widely used techniques to handwritten signature verification based, feature selection techniques. The focus of this research is to explore best features selection criteria for signature verification to avoid forgery. This paper further present pros and cons of local and global features selection techniques, reported in the state of art. Experiments are conducted on benchmark databases for signature verification systems (GPDS). Results are tested using two standard protocols; GPDS and the program for rate estimation and feature selection. The current precision of the signature verification techniques reported in state of art are compared on benchmark database and possible solutions are suggested to improve the accuracy. As the equal error rate is an important factor for evaluating the signature verification's accuracy, the results show that the feature selection methods have successfully contributed toward efficient signature verification.
机译:这项研究对基于手写签名验证的特征选择技术的广泛使用技术进行了深入的综述。这项研究的重点是探索用于签名验证以避免伪造的最佳功能选择标准。本文进一步介绍了最新技术中报告的局部和全局特征选择技术的利弊。在用于签名验证系统(GPDS)的基准数据库上进行了实验。使用两种标准协议测试结果; GPDS和速率估计和功能选择程序。在基准数据库上比较了现有技术中报告的签名验证技术的当前精度,并提出了可能的解决方案以提高准确性。由于相等的错误率是评估签名验证准确性的重要因素,因此结果表明,特征选择方法已成功地为有效的签名验证做出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号