首页> 外文期刊>International journal of computational systems engineering >A survey on word embedding techniques and semantic similarity for paraphrase identification
【24h】

A survey on word embedding techniques and semantic similarity for paraphrase identification

机译:关于嵌入技术的调查和解释识别的语义相似性

获取原文
获取原文并翻译 | 示例

摘要

In natural language processing (NLP), paraphrase identification (PI) determines the relatedness between the pair of sentences having fewer or negligible lexical overlap but still pointing towards the same meaning. The major challenge faced while attempting to solve this problem is the many possible linguistic variations conveying the same purpose. This paper aims to provide a detailed survey of traditional similarity measures, statistical machine translation metrics, machine learning and deep learning techniques and a well-defined flow between them. This article encompasses various word embedding methods and step-wise derivation of its learning module. This survey paper also provides a definite flow pointing towards the evolution of deep learning in an unambiguous manner. A comparative analysis of various techniques to solve PI is presented and it will provide research directions to work in the similar domain.
机译:在自然语言处理(NLP)中,解释识别(PI)确定了具有较少或可忽略的词汇重叠但仍指向相同含义的一对句子之间的相关性。尝试解决这个问题时面临的主要挑战是传达相同目的的许多可能的语言变化。本文旨在提供对传统相似性措施的详细调查,统计机器翻译指标,机器学习和深度学习技术以及它们之间的明确界定。本文包含其学习模块的各种单词嵌入方法和逐步推导。该调查纸还提供了一个明确的流量,以明确的方式指向深度学习的演变。提出了对求解PI的各种技术的比较分析,它将提供在类似领域工作的研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号