首页> 外文期刊>International journal of computational intelligence research >Neural Network Based Context Dependent Recognition Approach for Low Indexed Images
【24h】

Neural Network Based Context Dependent Recognition Approach for Low Indexed Images

机译:基于神经网络的低索引图像上下文相关识别方法

获取原文
获取原文并翻译 | 示例

摘要

An integral approach to explore the resolution of the image variation is presented in this paper. The natural images are observed to be variant with respect to the resolution variation in all directions. The resolutional variations are used as feature information to neural network for the recognition of images with image content variation. The paper presents the texture variation with shape as reference feature for the image recognition with neural network approach. The approach of textural information lists neural network approach is found to be more accurate in estimation accuracy as compared to the conventional content based neural approach
机译:本文提出了一种探索图像变化分辨率的整体方法。观察到自然图像相对于所有方向上的分辨率变化都是变化的。分辨率变化用作神经网络的特征信息,以识别具有图像内容变化的图像。提出了形状变化的纹理变化作为参考特征的神经网络图像识别方法。发现与传统的基于内容的神经方法相比,纹理信息列表神经网络方法在估计精度上更为准确

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号