首页> 外文期刊>International journal of circuit theory and applications >Design trade-offs of a capacitance-to-voltage converter with a zoom-in technique for grounded capacitive sensors
【24h】

Design trade-offs of a capacitance-to-voltage converter with a zoom-in technique for grounded capacitive sensors

机译:接地电容式传感器采用放大技术的电容电压转换器的设计折衷

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a low-power, high-precision capacitance-to-voltage converter (CVC) for grounded capacitive sensors. To measure very small capacitance variations in the presence of a large offset capacitance, a new zoom-in structure is proposed. The major non-idealities of the CVC such as the settling error, charge injection, and parasitic capacitance of the switches are minimized through an optimized design. Accordingly, it is shown that the zoom-in technique can significantly reduce many of these errors. The effect of the parasitic capacitances around the sensor capacitance is significantly reduced by using a switched-capacitor-based active-shielding technique. The interface is designed as an integrated circuit using a standard 0.18-mu m CMOS technology. Simulation results show that for a sensor capacitor with a nominal value of 10 pF, variation of only 200 fF, and parasitic capacitance of up to 20 pF, a worst-case capacitance error of 0.2 fF can be achieved by taking into account the layout mismatches and the interconnection effects. The achieved latency is 100 mu s, and the CVC consumes only 80 mu A from a 2-V power supply. The simulated input capacitance resolution for this latency is 123 aF, which is quite close to our calculated resolution (126 aF). This resolution corresponds to an energy efficiency of 9.82 pJ/Step. A temperature sweep simulation has been performed over the temperature range from -45 degrees C to 125 degrees C to demonstrate the small thermal drift of the designed circuit.
机译:本文提出了一种用于接地电容传感器的低功耗,高精度电容电压转换器(CVC)。为了在存在大偏置电容的情况下测量非常小的电容变化,提出了一种新的放大结构。通过优化设计,可以将CVC的主要非理想因素(例如,建立误差,电荷注入和开关的寄生电容)降至最低。因此,示出了放大技术可以显着减少许多这些误差。通过使用基于开关电容器的有源屏蔽技术,可以显着降低传感器电容周围的寄生电容的影响。该接口使用标准的0.18微米CMOS技术设计为集成电路。仿真结果表明,对于标称值为10 pF,变化仅为200 fF且寄生电容高达20 pF的传感器电容器,考虑布局失配,可以实现0.2 fF的最坏情况下的电容误差以及相互影响。达到的延迟时间为100μs,CVC从2 V电源仅消耗80μA。针对此延迟的模拟输入电容分辨率为123 aF,这非常接近我们计算出的分辨率(126 aF)。该分辨率对应的能量效率为9.82 pJ / Step。在-45摄氏度至125摄氏度的温度范围内进行了温度扫描仿真,以证明所设计电路的热漂移小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号