首页> 外文期刊>International journal of artificial intelligence and soft computing >Gesture recognition system using 2D-invariant moment feature and Elman neural network
【24h】

Gesture recognition system using 2D-invariant moment feature and Elman neural network

机译:利用二维不变矩特征和Elman神经网络的手势识别系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a simple sign language recognition system that has been developed using skin colour segmentation and Elman neural network. A simple segmentation process is carried out to separate the right and left hand. The 2D-invariant moments of the right and left hand segmented image are obtained as features. Using the 2D-invariant moment features, an Elman neural network model was developed. The system has been implemented and tested for its validity. Experimental results show that the system has a recognition rate of 90.63%.
机译:本文介绍了一种使用肤色分割和Elman神经网络开发的简单手语识别系统。进行简单的分割过程以分离右手和左手。获得左右分割图像的二维不变矩作为特征。利用二维不变矩特征,开发了Elman神经网络模型。该系统已经实施并经过了有效性测试。实验结果表明,该系统的识别率为90.63%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号