首页> 外文期刊>International journal of artificial intelligence and soft computing >A new kernel-based possibilistic intuitionistic fuzzy c-means clustering
【24h】

A new kernel-based possibilistic intuitionistic fuzzy c-means clustering

机译:基于核的新的直觉模糊c均值聚类

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy c-means and its derivatives such as possibilistic c-means and possibilistic fuzzy c-means are the most widely used clustering algorithms in the literature. Though efficient, these clustering algorithms do not achieve high cluster quality on real-world datasets, which are not linearly separable. Kernel-based clustering algorithms employ nonlinear similarity measures to define the inter-point similarities. As a result, they are able to identify clusters of arbitrary shapes and densities. Comparative analysis over standard datasets has established the superiority of kernel methods over its corresponding standard algorithms. In this paper, we propose a kernel-based Atanassov's possibilistic intuitionistic fuzzy clustering for data clustering and image segmentation. The paper explores the performance of the proposed methodology with respect to various internal and external indices for various real datasets and it is found to perform better than other clustering techniques in the sequel, i.e., normal as well as kernel-based algorithms. Experimental results on noisy image datasets also show the competence of the proposed approach.
机译:模糊c均值及其导数(例如,可能性c均值和可能性模糊c均值)是文献中使用最广泛的聚类算法。尽管有效,但这些聚类算法无法在不可线性分离的真实数据集上实现较高的聚类质量。基于内核的聚类算法采用非线性相似性度量来定义点间相似性。结果,他们能够识别任意形状和密度的簇。通过对标准数据集的比较分析,已经确定了内核方法​​优于其相应的标准算法。在本文中,我们提出了基于核的Atanassov可能直觉模糊聚类,用于数据聚类和图像分割。本文探讨了针对各种实际数据集的各种内部和外部索引所提出的方法的性能,发现其性能优于后续的其他聚类技术,即常规算法和基于内核的算法。在嘈杂图像数据集上的实验结果也表明了该方法的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号