首页> 外文期刊>International Journal of Applied Pattern Recognition >A comprehensive survey on the reduction of the semantic gap in content-based image retrieval
【24h】

A comprehensive survey on the reduction of the semantic gap in content-based image retrieval

机译:基于内容的图像检索中的语义差距减少的全面调查

获取原文
获取原文并翻译 | 示例

摘要

In the last few decades, content-based image retrieval is considered as one of the most vivid research topics in the field of information retrieval. The limitation of current content-based image retrieval systems is that low-level features are highly ineffective to represent the semantic contents of the image. Most of the research work in content-based image retrieval is focused on bridging the semantic gap between the low-level features and high-level semantic concepts of image. This paper presents a thorough study of different techniques for the reduction of semantic gap. The existing techniques are broadly categorised as: 1) image annotation techniques to define the high-level concepts in image; 2) relevance feedback techniques to integrate user's perception; 3) machine learning and deep learning techniques to associate low-level features with high-level concepts. In addition, the general architecture of semantic-based image retrieval system has been discussed in this survey. This paper also highlights the current and future applications of content-based image retrieval. The paper concludes with promising future research directions.
机译:在过去的几十年中,基于内容的图像检索被认为是信息检索领域中最生动的研究主题之一。基于内容的图像检索系统的限制是低级特征是高度效率,以表示图像的语义内容。基于内容的图像检索中的大多数研究工作都集中在桥接低级特征与图像的高级语义概念之间的语义差距。本文介绍了对不同技术的彻底研究,以减少语义差距。现有技术广泛分类为:1)图像注释技术,用于定义图像中的高级概念; 2)相关性反馈技术整合用户的感知; 3)机器学习和深度学习技术,将低级功能与高级概念相关联。此外,在本调查中讨论了基于语义的图像检索系统的一般体系结构。本文还突出了基于内容的图像检索的当前和未来应用。论文结束了未来的未来研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号