首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >IMPLEMENTATION AND EVALUATION OF MEDICAL IMAGING TECHNIQUES BASED ON CONFORMAL GEOMETRIC ALGEBRA
【24h】

IMPLEMENTATION AND EVALUATION OF MEDICAL IMAGING TECHNIQUES BASED ON CONFORMAL GEOMETRIC ALGEBRA

机译:基于保形几何代数的医学成像技术的实施与评估

获取原文
获取原文并翻译 | 示例

摘要

Medical imaging tasks, such as segmentation, 3D modeling, and registration of medical images, involve complex geometric problems, usually solved by standard linear algebra and matrix calculations. In the last few decades, conformal geometric algebra (CGA) has emerged as a new approach to geometric computing that offers a simple and efficient representation of geometric objects and transformations. However, the practical use of CGA-based methods for big data image processing in medical imaging requires fast and efficient implementations of CGA operations to meet both real-time processing constraints and accuracy requirements. The purpose of this study is to present a novel implementation of CGA-based medical imaging techniques that makes them effective and practically usable. The paper exploits a new simplified formulation of CGA operators that allows significantly reduced execution times while maintaining the needed result precision. We have exploited this novel CGA formulation to re-design a suite of medical imaging automatic methods, including image segmentation, 3D reconstruction and registration. Experimental tests show that the re-formulated CGA-based methods lead to both higher precision results and reduced computation times, which makes them suitable for big data image processing applications. The segmentation algorithm provides the Dice index, sensitivity and specificity values of 98.14%, 98.05% and 97.73%, respectively, while the order of magnitude of the errors measured for the registration methods is 10~(-5).
机译:医学成像任务,例如分段,3D建模和医学图像的登记,涉及复杂的几何问题,通常由标准线性代数和矩阵计算解决。在过去的几十年中,共形几何代数(CGA)已成为几何计算的新方法,其提供了一种简单有效的几何物体和变换的表示。然而,基于CGA的大数据图像处理的实际应用在医学成像中需要快速有效的CGA操作实现,以满足实时处理约束和精度要求。本研究的目的是提出基于CGA的医学成像技术的新颖实现,使它们能够有效和实际使用。该纸利用CGA运算符的新简化配方,其允许显着减少执行时间,同时保持所需的结果精度。我们利用这部小型CGA配方重新设计了一套医学成像自动方法,包括图像分割,三维重建和注册。实验测试表明,重新配制的基于CGA的方法导致更高的精度结果和降低的计算时间,这使得它们适用于大数据图像处理应用。分割算法分别提供98.14%,98.05%和97.73%的骰子指数,灵敏度和特异性值,而注册方法测量的误差级为10〜( - 5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号