首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >INTEGRATED REGION-BASED SEGMENTATION USING COLOR COMPONENTS AND TEXTURE FEATURES WITH PRIOR SHAPE KNOWLEDGE
【24h】

INTEGRATED REGION-BASED SEGMENTATION USING COLOR COMPONENTS AND TEXTURE FEATURES WITH PRIOR SHAPE KNOWLEDGE

机译:使用颜色成分和纹理特征并具有优先形状知识的基于区域的集成分段

获取原文
获取原文并翻译 | 示例

摘要

Segmentation is the art of partitioning an image into different regions where each one has some degree of uniformity in its feature space. A number of methods have been proposed and blind segmentation is one of them. It uses intrinsic image features, such as pixel intensity, color components and texture. However, some virtues, like poor contrast, noise and occlusion, can weaken the procedure. To overcome them, prior knowledge of the object of interest has to be incorporated in a top-down procedure for segmentation. Consequently, in this work, a novel integrated algorithm is proposed combining bottom-up (blind) and top-down (including shape prior) techniques. First, a color space transformation is performed. Then, an energy function (based on nonlinear diffusion of color components and directional derivatives) is defined. Next, signed-distance functions are generated from different shapes of the object of interest. Finally, a variational framework (based on the level set) is employed to minimize the energy function. The experimental results demonstrate a good performance of the proposed method compared with others and show its robustness in the presence of noise and occlusion. The proposed algorithm is applicable in outdoor and medical image segmentation and also in optical character recognition (OCR).
机译:分割是将图像划分为不同区域的技术,每个区域的特征空间具有一定程度的一致性。已经提出了许多方法,盲分割是其中之一。它使用固有的图像功能,例如像素强度,颜色分量和纹理。但是,某些优点(例如对比度差,噪点和遮挡)会削弱该过程。为了克服它们,必须将自感兴趣的对象的先验知识合并到自上而下的分割过程中。因此,在这项工作中,提出了一种新颖的集成算法,该算法结合了自下而上(盲)和自上而下(包括形状先验)技术。首先,执行色彩空间变换。然后,定义一个能量函数(基于颜色分量和方向导数的非线性扩散)。接下来,从感兴趣对象的不同形状生成符号距离函数。最后,采用变分框架(基于水平集)以最小化能量函数。实验结果表明,与其他方法相比,该方法具有良好的性能,并在存在噪声和遮挡的情况下具有鲁棒性。所提出的算法适用于室外和医学图像分割以及光学字符识别(OCR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号