首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >THE PERFORMANCE PROFILE: A MULTI-CRITERIA PERFORMANCE EVALUATION METHOD FOR TEST-BASED PROBLEMS
【24h】

THE PERFORMANCE PROFILE: A MULTI-CRITERIA PERFORMANCE EVALUATION METHOD FOR TEST-BASED PROBLEMS

机译:性能概况:基于测试的问题的多准则性能评估方法

获取原文
获取原文并翻译 | 示例

摘要

In test-based problems, solutions produced by search algorithms are typically assessed using average outcomes of interactions with multiple tests. This aggregation leads to information loss, which can render different solutions apparently indifferent and hinder comparison of search algorithms. In this paper we introduce the performance profile, a generic, domain-independent, multi-criteria performance evaluation method that mitigates this problem by characterizing the performance of a solution by a vector of outcomes of interactions with tests of various difficulty. To demonstrate the usefulness of this gauge, we employ it to analyze the behavior of Othello and Iterated Prisoner's Dilemma players produced by five (co) evolutionary algorithms as well as players known from previous publications. Performance profiles reveal interesting differences between the players, which escape the attention of the scalar performance measure of the expected utility. In particular, they allow us to observe that evolution with random sampling produces players coping well against the mediocre opponents, while the coevolutionary and temporal difference learning strategies play better against the high-grade opponents. We postulate that performance profiles improve our understanding of characteristics of search algorithms applied to arbitrary test-based problems, and can prospectively help design better methods for interactive domains.
机译:在基于测试的问题中,通常使用与多个测试交互的平均结果来评估由搜索算法产生的解决方案。这种聚集导致信息丢失,这可能使不同的解决方案显得冷漠,并阻碍了搜索算法的比较。在本文中,我们介绍了性能概况,这是一种通用的,与领域无关的多准则性能评估方法,该方法通过使用具有各种难度的测试的交互作用结果向量来表征解决方案的性能,从而缓解了此问题。为了证明该量规的有用性,我们将其用于分析由五种(共同)进化算法产生的奥赛罗和迭代囚徒困境玩家的行为,以及先前出版物中已知的玩家。性能曲线揭示了参与者之间有趣的差异,这些差异使人们不再关注预期效用的标量性能度量。尤其是,它们使我们可以观察到,通过随机抽样进行进化可以使玩家很好地应对平庸的对手,而协同进化和时间差异学习策略则可以更好地应对高级对手。我们假设性能概要文件可以增进我们对适用于任意基于测试的问题的搜索算法特征的理解,并且可以前瞻性地帮助设计用于交互式域的更好方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号