首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >AN ALGORITHM FOR ARBITRARY-ORDER CUMULANT TENSOR CALCULATION IN A SLIDING WINDOW OF DATA STREAMS
【24h】

AN ALGORITHM FOR ARBITRARY-ORDER CUMULANT TENSOR CALCULATION IN A SLIDING WINDOW OF DATA STREAMS

机译:数据流滑动窗口中任意阶累积量张量计算的算法

获取原文
获取原文并翻译 | 示例

摘要

High-order cumulant tensors carry information about statistics of non-normally distributed multivariate data. In this work we present a new efficient algorithm for calculation of cumulants of arbitrary orders in a sliding window for data streams. We show that this algorithm offers substantial speedups of cumulant updates compared with the current solutions. The proposed algorithm can be used for processing on-line high-frequency multivariate data and can find applications, e.g., in on-line signal filtering and classification of data streams. To present an application of this algorithm, we propose an estimator of non-Gaussianity of a data stream based on the norms of high order cumulant tensors. We show how to detect the transition from Gaussian distributed data to non-Gaussian ones in a data stream. In order to achieve high implementation efficiency of operations on super-symmetric tensors, such as cumulant tensors, we employ a block structure to store and calculate only one hyper-pyramid part of such tensors.
机译:高阶累积量张量携带有关非正态分布多元数据统计信息的信息。在这项工作中,我们提出了一种新的高效算法,用于在数据流的滑动窗口中计算任意阶的累积量。我们表明,与当前解决方案相比,该算法可显着提高累积更新速度。所提出的算法可以用于处理在线高频多元数据,并且可以找到例如在在线信号滤波和数据流分类中的应用。为了介绍该算法的应用,我们提出了一种基于高阶累积量张量范数的数据流非高斯估计器。我们展示了如何检测数据流中从高斯分布数据到非高斯分布数据的过渡。为了在诸如累积量张量的超对称张量上实现较高的运算效率,我们采用块结构来存储和计算此类张量的一个超金字塔部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号