首页> 外文期刊>International Journal of Adaptive Control and Signal Processing >Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation
【24h】

Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation

机译:自适应稀疏信道估计的零吸引可变步长最小均方算法

获取原文
获取原文并翻译 | 示例

摘要

Recently, sparsity-aware least mean square (LMS) algorithms have been proposed to improve the performance of the standard LMS algorithm for various sparse signals, such as the well-known zero-attracting LMS (ZA-LMS) algorithm and its reweighted ZA-LMS (RZA-LMS) algorithm. To utilize the sparsity of the channels in wireless communication and one of the inherent advantages of the RZA-LMS algorithm, we propose an adaptive reweighted zero-attracting sigmoid functioned variable-step-size LMS (ARZA-SVSS-LMS) algorithm by the use of variable-step-size techniques and parameter adjustment method. As a result, the proposed ARZA-SVSS-LMS algorithm can achieve faster convergence speed and better steady-state performance, which are verified in a sparse channel and compared with those of other popular LMS algorithms. The simulation results show that the proposed ARZA-SVSS-LMS algorithm outperforms the standard LMS algorithm and the previously proposed sparsity-aware algorithms for dealing with sparse signals. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:最近,提出了稀疏感知最小均方(LMS)算法,以提高各种稀疏信号的标准LMS算法的性能,例如众所周知的零吸引LMS(ZA-LMS)算法及其重新加权的ZA- LMS(RZA-LMS)算法。为了利用无线通信中信道的稀疏性以及RZA-LMS算法的固有优势之一,我们提出了一种自适应重加权零吸引乙状结肠功能可变步长LMS(ARZA-SVSS-LMS)算法。步长可变技术和参数调整方法。结果,提出的ARZA-SVSS-LMS算法可以实现更快的收敛速度和更好的稳态性能,这在稀疏信道中得到了验证,并且与其他流行的LMS算法相比。仿真结果表明,所提出的ARZA-SVSS-LMS算法优于标准LMS算法和先前提出的稀疏感知算法。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号