首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Learning to Recognize Video-Based Spatiotemporal Events
【24h】

Learning to Recognize Video-Based Spatiotemporal Events

机译:学习识别基于视频的时空事件

获取原文
获取原文并翻译 | 示例

摘要

A key research issue in activity recognition in real-world applications, such as in intelligent transportation systems (ITS), is to automatically learn robust models of activities that require minimal human training. In this paper, we contribute a novel approach for learning sequenced spatiotemporal activities in outdoor traffic intersections. Concretely, by representing the activities as sequences of actions, we contribute a semisupervised learning algorithm that learns activities as complete stochastic context-free grammars (SCFGs), namely, the grammar structure and the parameters. Our approach has been implemented and tested on real-world scenes, and we present experimental results of the grammar learning and activity recognition applied to datacollection and traffic monitoring applications using video data.
机译:在诸如智能交通系统(ITS)之类的实际应用中,活动识别中的一个关键研究问题是自动学习功能强大的活动模型,而这些活动模型需要最少的人工培训。在本文中,我们为在室外交通路口学习有序的时空活动提供了一种新颖的方法。具体而言,通过将活动表示为动作序列,我们贡献了一种半监督学习算法,该算法将活动学习为完整的随机上下文无关文法(SCFG),即语法结构和参数。我们的方法已经在现实世界的场景上实施和测试,并且我们展示了语法学习和活动识别的实验结果,这些结果应用于使用视频数据的数据收集和流量监控应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号