首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Adaptive Multi-Kernel SVM With Spatial–Temporal Correlation for Short-Term Traffic Flow Prediction
【24h】

Adaptive Multi-Kernel SVM With Spatial–Temporal Correlation for Short-Term Traffic Flow Prediction

机译:自适应多核SVM具有短期交通流量预测的空间时间相关性

获取原文
获取原文并翻译 | 示例

摘要

Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.
机译:准确估算交通国可以帮助解决城市交通拥堵问题,为人民旅行和交通规例提供指导建议。在本文中,我们提出了一种基于自适应多核支持向量机(AMSVM)的新型短期交通流量预测算法,其空间时间相关,其被命名为AMSVM-STC。首先,我们探讨了交通流量的非线性和随机性,并杂交高斯内核和多项式内核构成AMSVM。其次,我们利用自适应粒子群优化算法优化AMSVM的参数,并提出了一种新的方法,使混合内核的重量根据实时业务流量的变化趋势自适应地调整。第三,我们将空间关联信息与AMSVM纳入以预测短期交通流量。我们通过在真实数据集上进行彻底的实验来评估我们的算法。结果表明,即使在交通状况迅速改变时,我们的算法也可以在高峰时段进行及时和自适应预测。同时,提议的AMSVM-STC优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号