首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Toward a More Realistic, Cost-Effective, and Greener Ground Movement Through Active Routing—Part I: Optimal Speed Profile Generation
【24h】

Toward a More Realistic, Cost-Effective, and Greener Ground Movement Through Active Routing—Part I: Optimal Speed Profile Generation

机译:通过主动路径实现更现实,更经济,更环保的地面运动-第一部分:最佳速度曲线生成

获取原文
获取原文并翻译 | 示例
           

摘要

Among all airport operations, aircraft ground movement plays a key role in improving overall airport capacity as it links other airport operations. Moreover, ever-increasing air traffic, rising costs, and tighter environmental targets create pressure to minimize fuel burn on the ground. However, current routing functions envisioned in Advanced Surface Movement, Guidance and Control Systems almost exclusively consider the most time-efficient solution and apply a conservative separation to ensure conflict-free surface movement, sometimes with additional buffer times to absorb small deviations from the taxi times. Such an overly constrained routing approach may result in either a too tight planning for some aircraft so that fuel efficiency is compromised due to multiple acceleration phases, or performance could be further improved by reducing the separation and buffer times. In light of this, Parts I and II of this paper present a new Active Routing (AR) framework with the aim of providing a more realistic, cost-effective, and environmental friendly surface movement, targeting some of the busiest international hub airports. Part I of this paper focuses on optimal speed profile generation using a physics-based aircraft movement model. Two approaches based, respectively, on the Base of Aircraft Data and the International Civil Aviation Organization engine emissions database have been employed to model fuel consumption. These models are then embedded within a multiobjective optimization framework to capture the essence of different speed profiles in a Pareto optimal sense. The proposed approach represents the first attempt to systematically address speed profiles with competing objectives. Results reveal an apparent tradeoff between fuel burn and taxi times irrespective of fuel consumption modeling approaches. This will have a profound impact on the routing and scheduling and open the door for the new concept of AR discussed in Part II of this paper.
机译:在所有机场运营中,飞机地面运动与其他机场运营联系在一起,在提高整体机场容量方面发挥着关键作用。此外,不断增长的空中交通,不断上涨的成本以及更严格的环境目标也产生了压力,要求最大程度地减少地面上的燃料燃烧。但是,高级地面运动,制导和控制系统中设想的当前选路功能几乎专门考虑了最省时的解决方案,并采取保守的分隔以确保无冲突的地面运动,有时还要增加缓冲时间以吸收与滑行时间的微小偏差。这种过于受限的航路方法可能导致某些飞机的计划过于紧张,从而由于多个加速阶段而降低了燃油效率,或者可以通过减少间隔和缓冲时间来进一步提高性能。有鉴于此,本文的第一部分和第二部分提出了一个新的主动航线(AR)框架,旨在提供针对某些最繁忙的国际枢纽机场的更现实,成本有效且环保的地面移动。本文的第一部分着重于使用基于物理学的飞机运动模型生成最佳速度曲线。分别基于飞机数据基础和国际民航组织发动机排放数据库的两种方法已被用来对燃油消耗进行建模。然后将这些模型嵌入多目标优化框架中,以从帕累托最优意义上捕捉不同速度曲线的本质。提出的方法代表了系统地解决具有竞争目标的速度曲线的首次尝试。结果表明,与油耗建模方法无关,燃油消耗和滑行时间之间存在明显的权衡。这将对路由和调度产生深远影响,并为本文第二部分中讨论的AR新概念打开大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号