首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Smartphone Transportation Mode Recognition Using a Hierarchical Machine Learning Classifier and Pooled Features From Time and Frequency Domains
【24h】

Smartphone Transportation Mode Recognition Using a Hierarchical Machine Learning Classifier and Pooled Features From Time and Frequency Domains

机译:使用分层机器学习分类器和时域和频域的合并特征进行智能手机运输模式识别

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a novel two-layer hierarchical classifier that increases the accuracy of traditional transportation mode classification algorithms. This paper also enhances classification accuracy by extracting new frequency domain features. Many researchers have obtained these features from global positioning system data; however, this data was excluded in this paper, as the system use might deplete the smartphone’s battery and signals may be lost in some areas. Our proposed two-layer framework differs from previous classification attempts in three distinct ways: 1) the outputs of the two layers are combined using Bayes’ rule to choose the transportation mode with the largest posterior probability; 2) the proposed framework combines the new extracted features with traditionally used time domain features to create a pool of features; and 3) a different subset of extracted features is used in each layer based on the classified modes. Several machine learning techniques were used, including k-nearest neighbor, classification and regression tree, support vector machine, random forest, and a heterogeneous framework of random forest and support vector machine. Results show that the classification accuracy of the proposed framework outperforms traditional approaches. Transforming the time domain features to the frequency domain also adds new features in a new space and provides more control on the loss of information. Consequently, combining the time domain and the frequency domain features in a large pool and then choosing the best subset results in higher accuracy than using either domain alone. The proposed two-layer classifier obtained a maximum classification accuracy of 97.02%.
机译:本文开发了一种新颖的两层分层分类器,该分类器提高了传统运输方式分类算法的准确性。本文还通过提取新的频域特征来提高分类精度。许多研究人员已经从全球定位系统数据中获得了这些功能。但是,此数据未在本文中排除,因为系统使用可能会耗尽智能手机的电池,并且某些区域可能会丢失信号。我们提出的两层框架与以前的分类尝试在三个方面有所不同:1)使用贝叶斯法则将两层的输出组合起来,以选择具有最大后验概率的运输方式; 2)提出的框架将新提取的特征与传统上使用的时域特征相结合以创建特征池; 3)基于分类模式,在每一层中使用不同的提取特征子集。使用了几种机器学习技术,包括k最近邻,分类和回归树,支持向量机,随机森林以及随机森林和支持向量机的异构框架。结果表明,提出的框架的分类精度优于传统方法。将时域特征转换为频域还可以在新空间中添加新特征,并提供对信息丢失的更多控制。因此,在一个大型池中组合时域和频域特征,然后选择最佳子集会比单独使用任一域产生更高的准确性。提出的两层分类器的最大分类精度为97.02%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号