首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Evaluation of Detection Approaches for Road Anomalies Based on Accelerometer Readings—AddressingWho’s Who
【24h】

Evaluation of Detection Approaches for Road Anomalies Based on Accelerometer Readings—AddressingWho’s Who

机译:基于加速度计读数的道路异常检测方法评估-解决谁是谁

获取原文
获取原文并翻译 | 示例

摘要

A wide range of new possibilities in the area of intelligent transportation systems (ITS) emerged when sensors, such as accelerometers, were introduced in practically every smartphone. A clear example is using a driver's smartphone to detect the vertical movement experienced by the vehicle when passing over a pothole or bump; in other words, sensing the quality of the road. To this end, several approaches have been proposed in the literature, most of them based on thresholds applied to accelerometer readings. Nonetheless, no fair comparison of these approaches had been done until now, mainly because of the lack of public datasets. In this paper, we propose a platform to create road data sets that could be used by the community to create their own roads with their own requirements. Using this platform, we assembled a data set of 30 roads plagued with potholes and bumps, which we used to evaluate the most popular heuristics previously reported. From our study, a heuristic, called STDEV(Z), based on standard deviation analysis proposed by Mednis et al. obtained the best results among the considered reference methodologies. This finding suggests that measures of dispersion, specifically standard deviation, are among the best indicators to identify disruptions on accelerometer readings. From this point, we fused features used by all these heuristics within our own feature vector, which we used with a support vector machine. We show that the proposed methodology clearly outperforms all other evaluated methods. To support these conclusions, results were statistically validated. We expect to lay the first steps to homogenize future comparisons as well as to provide stronger baselines to be considered in subsequent works.
机译:几乎在每部智能手机中都引入了加速度计等传感器,从而在智能交通系统(ITS)领域出现了许多新的可能性。一个明显的例子是使用驾驶员的智能手机检测车辆经过坑洼或颠簸时所经历的垂直运动。换句话说,感知道路质量。为此,在文献中已经提出了几种方法,其中大多数是基于应用于加速度计读数的阈值。尽管如此,到目前为止,还没有对这些方法进行公平的比较,这主要是由于缺乏公共数据集。在本文中,我们提出了一个创建道路数据集的平台,社区可以使用该平台创建具有自己需求的道路。使用该平台,我们收集了30条道路的数据集,这些道路充满了坑洼和颠簸,我们用它们来评估先前报道的最流行的启发式方法。根据我们的研究,基于Mednis等人提出的标准偏差分析,一种启发式算法称为STDEV(Z)。在参考方法中获得了最佳结果。这一发现表明,色散的测量,特别是标准偏差,是识别加速度计读数中断的最佳指标之一。从这一点出发,我们将所有这些启发式算法使用的特征融合到了我们自己的特征向量中,并与支持向量机一起使用。我们表明,提出的方法论明显优于所有其他评估方法。为了支持这些结论,对结果进行了统计验证。我们期待着迈出第一步,以使未来的比较变得同质化,并为以后的工作提供更强的基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号