首页> 外文期刊>Intelligent data analysis >A novel adaptive k-NN classifier for handling imbalance: Application to brain MRI
【24h】

A novel adaptive k-NN classifier for handling imbalance: Application to brain MRI

机译:一种用于处理不平衡的新型自适应K-NN分类器:应用于脑MRI

获取原文
获取原文并翻译 | 示例

摘要

The problem of efficiently classifying imbalanced data has become one of the most challenging tasks in machine learning. Some real world examples include medical image analysis, fraud detection, fault diagnosis, and anomaly detection. Although several data-level algorithms have been developed to address imbalance, they are typically subject to some restrictions. We propose a novel variant of the k -NN family of classifiers, and name this as Density-based Adaptive-distance k NN (DAk NN). It can effectively handle data with skewed distributions and varying class-densities using the concept of adaptive distance. Comparative superiority is experimentally established over related data-level algorithms (SMOTE, ADASYN), using ten sets of two-class data, in terms of geometric mean (of the true positive and negative rates) and accuracy. Additionally, five sets of multi-class data are considered and compared with different variants of k -NN, which are currently very popular. Finally, DAk NN is successfully applied on the highly imbalanced Lower Grade Glioma (LGG) MR images, with an Average-Dice score of 0.9082 for delineating the tumor regions. The results demonstrate clear superiority over state-of-the-art algorithms.
机译:有效地分类不平衡数据的问题已成为机器学习中最具挑战性的任务之一。一些现实世界的例子包括医学图像分析,欺诈检测,故障诊断和异常检测。虽然已经开发了几种数据级算法来解决不平衡,但它们通常受到一些限制。我们提出了一种新的k-nn系列分类器的变种,并将其称为基于密度的自适应距离K nn(Dak Nn)。它可以有效地处理具有偏斜分布的数据和使用自适应距离的概念不同的类密度。比较优势在通过几何平均值(真正正负率)和准确度的几何平均值(真正的正负)和准确度而在实验上建立了相关数据级别算法(SMOTE,Adasyn)的实验性。此外,与当前非常流行的K-Nn的不同变体进行考虑并将五组多级数据进行了比较。最后,DAK NN成功地应用于高度不平衡的较低级胶质瘤(LGG)MR图像,平均骰子得分为0.9082,用于描绘肿瘤区域。结果表明,通过最先进的算法明显优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号