首页> 外文期刊>Intelligent data analysis >An on-demand service aggregation and service recommendation method based on RGPS
【24h】

An on-demand service aggregation and service recommendation method based on RGPS

机译:基于RGPS的按需服务聚合与服务推荐方法

获取原文
获取原文并翻译 | 示例

摘要

"Internet plus" application service recommendation is challenged by two issues: One is the increase in service volume and the disorderliness of the service organizations. A second is the diversification of user requirements. The research focus of this study was to investigate how to achieve more ordered aggregation and recommend services that meet the individualized requirements of users. This paper addresses the disorderliness of conventional service aggregation and considers the aggregation requirements of QoS weights with non-functional targets. Based on semantic relevance using the role (R), goal (G), process (P), service (S) demand metamodel, an RGPS association is proposed that is a weighted network for ordered QoS service aggregation. An individualized service recommendation method then is provided, based on an LSTM neural network with role and target backstepping using RGPS association network, that can achieve a high-quality precision service. Finally, a simulation experiment was carried out on service recommendations in the tourism domain, which verified the precision, effectiveness and application value of the service recommendation method.
机译:“Internet Plus”申请服务推荐受到两个问题的挑战:一个是服务量的增加和服务组织的无障碍。第二个是用户要求的多样化。本研究的研究重点是调查如何实现更多有序的聚合并推荐符合用户的个性化需求的服务。本文涉及传统服务聚合的无序性,并考虑与非功能性目标的QoS权重的聚合要求。基于使用角色(R),目标(G),进程(P),服务需求元模型,提出了一个RGPS关联的语义相关性,这是一个有序QoS服务聚合的加权网络。然后基于使用RGPS关联网络的LSTM神经网络提供个性化的服务推荐方法,基于LSTM神经网络,可以实现高质量的精度服务。最后,在旅游领域的服务建议下进行了仿真实验,验证了服务推荐方法的精度,有效性和应用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号