首页> 外文期刊>Intelligent data analysis >Bayesian recommender system for social information sharing: Incorporating tag-based personalized interest and social relationships
【24h】

Bayesian recommender system for social information sharing: Incorporating tag-based personalized interest and social relationships

机译:贝叶斯建议社交信息分享系统:纳入基于标签的个性化兴趣和社会关系

获取原文
获取原文并翻译 | 示例

摘要

Personal information management enables users to manage and classify information via the social tagging. The personal information management platform has recently successfully adopted social networks, enabling users to conveniently share their preferences of information with each other. The emerging social networks generate new concepts for designing modern recommender systems in personal information management and sharing platforms.To design a recommender mechanism for the personal information management and sharing platforms, this work incorporates tag-based personalized interest and social network relationships into a modified Bayesian probability model.The proposed system is demonstrated with experimental datasets obtained from a popular social resource sharing website. The performances of the proposed system are evaluated based on the word2vec word embedding model. Experimental results indicate that incorporating social network information and personalized tag-based preference with the Bayesian model can improve the recommendation quality for social information sharing websites.
机译:个人信息管理使用户能够通过社交标记管理和分类信息。个人信息管理平台最近已成功采用了社交网络,使用户能够方便地将信息彼此分享。新兴的社交网络为在个人信息管理和共享平台中设计了设计现代推荐系统的新概念。设计了个人信息管理和共享平台的推荐机制,这项工作将基于标签的个性化兴趣和社交网络关系融入了修改后的贝叶斯概率模型。使用从流行的社会资源共享网站获得的实验数据集进行了展示。基于Word2Vec Word嵌入模型来评估所提出的系统的性能。实验结果表明,与贝叶斯模型的社交网络信息和基于个性的基于标签的优先级,可以提高社交信息共享网站的推荐质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号