首页> 外文期刊>Intelligent data analysis >Setting attribute weights for κ-NN based binary classification via quadratic programming
【24h】

Setting attribute weights for κ-NN based binary classification via quadratic programming

机译:通过二次编程为基于κ-NN的二进制分类设置属性权重

获取原文
获取原文并翻译 | 示例

摘要

The κ-Nearest Neighbour (κ-NN) method is a typical lazy learning paradigm for solving classification problems. Although this method was originally proposed as a non-parameterised method, attribute weight setting has been commonly adopted to deal with irrelevant attributes. In this paper, we propose a new attribute weight setting method for κ-NN based classifiers using quadratic programming, which is particularly suitable for binary classification problems. Our method formalises the attribute weight setting problem as a quadratic programming problem and exploits commercial software to calculate attribute weights. To evaluate our method, we carried out a series of experiments on six established data sets. Experiments show that our method is quite practical for various problems and can achieve a stable increase in accuracy over the standard κ-NN method as well as a competitive performance. Another merit of the method is that it can use small training sets.
机译:κ最近邻居(κ-NN)方法是解决分类问题的典型懒惰学习范例。尽管此方法最初是作为非参数化方法提出的,但属性权重设置已普遍用于处理不相关的属性。在本文中,我们提出了一种基于二次规划的基于κ-NN的分类器属性权重设置方法,该方法特别适用于二进制分类问题。我们的方法将属性权重设置问题形式化为二次规划问题,并利用商业软件来计算属性权重。为了评估我们的方法,我们对六个已建立的数据集进行了一系列实验。实验表明,我们的方法对于各种问题都非常实用,可以比标准κ-NN方法稳定地提高准确性,并具有出色的性能。该方法的另一个优点是它可以使用小的训练集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号