首页> 外文期刊>Intelligent data analysis >A fuzzy approach for interpretation of ubiquitous data stream clustering and its application in road safety
【24h】

A fuzzy approach for interpretation of ubiquitous data stream clustering and its application in road safety

机译:模糊解释泛在数据流聚类的方法及其在道路安全中的应用

获取原文
获取原文并翻译 | 示例

摘要

Ubiquitous Data Mining is the process of analysing data emanating from distributed and heterogeneous sources in the form of a continuous stream with mobile and/or embedded devices. Unsupervised learning is clearly beneficial for initial understanding of data streams, and consequently various clustering algorithms have been developed and applied in UDM systems for the purpose of mining data streams. However, unsupervised data mining techniques require human intervention for further understanding and analysis of the clustering results. This becomes an issue as UDM applications aim to support mobile and highly dynamic users/applications and there is a need for real-time decision making and interpretation of results. In this paper we present an approach to automate the annotation of results obtained from ubiquitous data stream clustering to facilitate interpreting and use of the results to enable real-time, mobile decision making.
机译:无处不在的数据挖掘是一种分析以移动设备和/或嵌入式设备的连续流形式从分布式和异构源发出的数据的过程。无监督学习显然有利于初步了解数据流,因此,出于挖掘数据流的目的,已经开发了各种聚类算法并将其应用于UDM系统。但是,无监督数据挖掘技术需要人工干预才能进一步理解和分析聚类结果。由于UDM应用程序旨在支持移动和高度动态的用户/应用程序,因此这成为一个问题,并且需要实时决策和结果解释。在本文中,我们提出了一种方法,该方法可以自动注释从无处不在的数据流聚类中获得的结果,以促进结果的解释和使用,从而实现实时的移动决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号