首页> 外文期刊>Intelligent data analysis >SPaC-NF: A classifier based on sequential patterns with high netconf
【24h】

SPaC-NF: A classifier based on sequential patterns with high netconf

机译:SPaC-NF:基于具有高netconf的顺序模式的分类器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an accurate Sequential-Patterns based Classifier, called SPaC-NF, is proposed. SPaC-NF introduces a new pruning strategy, using the Netconf as measure of interest, that allows to prune the rules search space for building specific rules with high Netconf. Additionally, a new strategy for generating the Sequential-Patterns based Rules and a new way of ordering them based on their rule sizes and Netconf values is introduced in SPaC-NF. The ordering strategy together with the "Best K rules" satisfaction mechanism allows SPaC-NF to have better accuracy than SVM, J48, NaiveBayes and PART classifiers. Most of these classifiers were evaluated using Weka, a popular suite of machine learning software. The experiments were done using ten-fold cross-validation, reporting the average over the ten folds. Similar to other works, experiments were conducted using several document collections, three in our case: AFP, TDT and Reuter.
机译:在本文中,提出了一种基于序列模式的精确分类器,称为SPaC-NF。 SPaC-NF引入了一种新的修剪策略,使用Netconf作为感兴趣的度量,它允许修剪规则搜索空间以使用高Netconf构建特定规则。此外,在SPaC-NF中引入了一种新的策略,该策略用于生成基于顺序模式的规则,并基于规则大小和Netconf值对它们进行排序。排序策略与“最佳K规则”满足机制一起,使SPaC-NF的准确性优于SVM,J48,NaiveBayes和PART分类器。这些分类器中的大多数都使用流行的机器学习软件套件Weka进行了评估。实验使用十倍交叉验证完成,报告了十倍的平均值。与其他工作类似,使用多个文档集进行了实验,在我们的案例中为三个:AFP,TDT和Reuter。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号