首页> 外文期刊>Intelligent data analysis >A spatial-temporal trajectory clustering algorithm for eye fixations identification
【24h】

A spatial-temporal trajectory clustering algorithm for eye fixations identification

机译:时空轨迹聚类算法的眼动识别

获取原文
获取原文并翻译 | 示例

摘要

Eye movements mainly consist of fixations and saccades. The identification of eye fixations plays an important role in the process of eye-movement data research. At present, there is no standard method for identifying eye fixations. In this paper, eye movements are regarded as spatial-temporal trajectories. Hence, we present a spatial-temporal trajectory clustering algorithm for eye fixations identification. The main idea of the algorithm is based on Density-Based Spatial Clustering Algorithm with Noise (DBSCAN), which is commonly used in spatial clustering data. In order to apply DBSCAN to our spatial-temporal clustering data, we modified its original concept and algorithm. In addition, the optimum dispersion threshold (Eps) is derived automatically from the data sets with the aid of the 'gap statistic' theory. Using the confusion matrix measurement method, we compared the classification results obtained by our algorithm with four other expert algorithms for eye fixations identification show the proposed algorithm demonstrated an equal or better performance. Also, the robustness of our algorithm to additional noise in Points of Gaze (PoGs) data and changes in sampling rate has been verified.
机译:眼球运动主要包括注视和扫视。眼球注视的识别在眼动数据研究过程中起着重要作用。当前,没有用于识别眼内注视的标准方法。在本文中,眼球运动被视为时空轨迹。因此,我们提出了一种用于眼球注视的时空轨迹聚类算法。该算法的主要思想是基于带噪声的基于密度的空间聚类算法(DBSCAN),该算法通常在空间聚类数据中使用。为了将DBSCAN应用于我们的时空聚类数据,我们修改了其原始概念和算法。此外,借助“间隙统计”理论,可以从数据集中自动得出最佳色散阈值(Eps)。使用混淆矩阵测量方法,我们将算法获得的分类结果与其他四种用于眼部注视的专家算法进行了比较,结果表明所提出的算法表现出相同或更好的性能。同样,我们的算法对凝视点(PoGs)数据中的其他噪声和采样率变化的鲁棒性也得到了验证。

著录项

  • 来源
    《Intelligent data analysis》 |2016年第2期|377-393|共17页
  • 作者单位

    Beijing Inst Technol, Sch Automat, 703 Room,6 Bldg,5 South Zhongguancun St, Beijing 100081, Peoples R China;

    Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA;

    Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA;

    Beijing Inst Technol, Sch Automat, 703 Room,6 Bldg,5 South Zhongguancun St, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Automat, 703 Room,6 Bldg,5 South Zhongguancun St, Beijing 100081, Peoples R China;

    Inner Mongolia Univ, Sch Comp Sci, Hohhot, Inner Mongolia, Peoples R China;

    Beijing Inst Technol, Sch Life, Beijing 100081, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Eye fixations; spatial-temporal trajectory clustering; DBSCAN; optimum dispersion threshold;

    机译:眼睛注视;时空轨迹聚类;DBSCAN;最佳分散阈值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号