首页> 外文期刊>Intelligent automation and soft computing >MODELING AND PROCESSING USING REVERSIBLE CONSERVATIVE NOISY ELEMENTARY CELLULAR AUTOMATA CIRCUITS AND THEIR m-ary QUANTUM COMPUTING
【24h】

MODELING AND PROCESSING USING REVERSIBLE CONSERVATIVE NOISY ELEMENTARY CELLULAR AUTOMATA CIRCUITS AND THEIR m-ary QUANTUM COMPUTING

机译:可逆保守的有噪基本元胞自动电路及其微量子计算的建模与处理

获取原文
获取原文并翻译 | 示例

摘要

Modeling noisy discrete systems utilizing conservative reversible elementary' cellular automata (CRECA) is introduced. Reversibility in the ECA evolution rule and reversibility in the ECA circuit implementation are both achieved using a new Swap-based algorithm called Swap-based CRECA (SCRECA). The new method results in adding variable redundancy to counteract the effect of noise. The problem of obtaining a reversible map from an irreversible map is important because quantum circuits are inherently reversible and thus does not consume power, while irreversible circuits (due to either an irreversible mapping or to noise within a reversible mapping) cannot exist in the quantum domain and its circuits consume power. Since noise is an integral part of any real process and since the reduction of power consumption is a main requirement for the circuit design of future technologies such as in quantum computing (QC), the main features of several future technologies will include reversibility, and thus the method for designing noise-incorporating conservative and reversible circuits in the ECA context can play an important role in the design of circuits that consume minimal power for purposes such as low-power efficient simulation of noisy discrete system dynamics, and in several other applications especially that specific types of classical ECA have been already proven to be useful in the VLSI field such as achieving a high VLSI circuit testability. The quantum ECA (QECA) representations of: (1) m-ary orthonormal computational basis states quantum decision trees (QDTs) and (2) m-ary orthonormal composite basis states QDTs are also introduced as possible quantum representations for the modeling and manipulation of the QECA dynamics.
机译:介绍了利用保守可逆基本细胞自动机(CRECA)对嘈杂的离散系统进行建模的方法。 ECA演化规则中的可逆性和ECA电路实现中的可逆性都是使用一种新的基于交换的算法(称为基于交换的CRECA(SCRECA))实现的。新方法导致增加可变冗余以抵消噪声的影响。从不可逆图获得可逆图的问题很重要,因为量子电路本来就是可逆的,因此不消耗功率,而不可逆电路(由于不可逆映射或可逆映射内的噪声)不能存在于量子域中并且其电路消耗功率。由于噪声是任何实际过程中不可或缺的一部分,并且降低功耗是诸如量子计算(QC)等未来技术的电路设计的主要要求,因此几种未来技术的主要特征将包括可逆性,因此在ECA环境中设计并入噪声的保守和可逆电路的方法,在设计功耗最低的电路中,例如为低功率高效模拟嘈杂的离散系统动力学,以及在其他一些应用中,可以发挥重要作用。事实证明,特定类型的经典ECA已在VLSI领域(例如实现高VLSI电路可测试性)中有用。以下内容的量子ECA(QECA)表示形式:(1)多元正交基态量子决策树(QDT)和(2)多元正交基态QDT也作为可能的量子表示形式进行建模和操纵。 QECA动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号