首页> 外文期刊>Intelligent automation and soft computing >Fast knn classification based on softcore cpu and reconfigurable hardware
【24h】

Fast knn classification based on softcore cpu and reconfigurable hardware

机译:基于软核cpu和可重新配置的硬件的快速knn分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel architecture for k-nearest neighbor (/tNN) classification using field programmable gate array (FPGA). In the architecture, the first k closest vectors in the design set of a kNN classifier for each input vector are first identified by performing the partial distance search (PDS) in the wavelet domain. To implement the PDS in hardware, subspace search, bitplane reduction, multiple coefficient accumulation and multiple-module computation techniques are employed for the effective reduction of the area complexity and computation latency. The proposed implementation has been embedded in a softcore CPU for physical performance measurement. Experimental results show that the implementation provides a cost effective solution to the FPGA realization of kNN classification systems where both high throughput and low area cost are desired.
机译:本文提出了一种使用现场可编程门阵列(FPGA)进行k近邻(/ tNN)分类的新颖架构。在体系结构中,首先通过在小波域中执行部分距离搜索(PDS)来识别kNN分类器的设计集中每个输入向量的前k个最接近向量。为了在硬件中实现PDS,采用子空间搜索,位平面缩减,多系数累加和多模块计算技术来有效降低区域复杂度和计算延迟。拟议的实现已嵌入在软核CPU中,用于物理性能测量。实验结果表明,该实现为需要高吞吐量和低面积成本的kNN分类系统的FPGA实现提供了一种经济高效的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号