首页> 外文期刊>Intelligent automation and soft computing >PREDICTION OF BRIDGE MONITORING INFORMATION CHAOTIC USING TIME SERIES THEORY BY MULTI-STEP BP AND RBF NEURAL NETWORKS
【24h】

PREDICTION OF BRIDGE MONITORING INFORMATION CHAOTIC USING TIME SERIES THEORY BY MULTI-STEP BP AND RBF NEURAL NETWORKS

机译:基于时间序列理论的多步BP和RBF神经网络预测桥梁监测信息混沌

获取原文
获取原文并翻译 | 示例

摘要

This paper uses time series and chaos theory of phase space reconstruction. First, it monitors information phase space reconstruction parameters from the deflection of the mid-span in Masangxi Bridge. As a result, the delay value is 4, the embedded dimension for 15, the maximum number of predictable of 10. Then, it constructs the multiple-step recursive BP neural network and RBF neural network model and realizes the analysis and prediction of monitoring information based on space reconstruction parameters. As the results show, the BP neural network and RBF neural network are all effective in monitoring information prediction and RBF shares more advantages than the BP in keeping the structural dynamic performance.
机译:本文采用时间序列和混沌相空间重构理论。首先,它从Masangxi桥中跨的挠度监控信息相空间重构参数。结果,延迟值为4,嵌入维数为15,最大可预测数为10。然后,它构建了多步递归BP神经网络和RBF神经网络模型,并实现了监控信息的分析和预测基于空间重建参数。结果表明,BP神经网络和RBF神经网络均能有效地监测信息预测,并且RBF在保持结构动态性能方面比BP具有更多的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号