首页> 外文期刊>Intelligent automation and soft computing >A parallel and distributed algorithm for role discovery in large-scale social networks
【24h】

A parallel and distributed algorithm for role discovery in large-scale social networks

机译:大规模社交网络中角色发现的并行和分布式算法

获取原文
获取原文并翻译 | 示例

摘要

By analyzing large-scale number of human behavior data, we propose a new parallel and distributed algorithms for social role discovery based on dynamic and fine-grained human behavior attributes in social networks. We first mining and propose number of properties that on behalf of human behavior. After that, to deal with the large human behavior data, a simple, scalable and distributed parallel clustering algorithm based on grid and density is developed. The theoretical analysis and experimental results show that the algorithm has better efficiency and effectiveness, and algorithms reveals valuable discovery on the real-life datasets. Besides, the methodology in this paper for user role discovery also can be applied to social networks in general.
机译:通过分析大量的人类行为数据,我们提出了一种新的并行和分布式算法,用于基于社交网络中动态且细粒度的人类行为属性进行社会角色发现。我们首先进行挖掘并提出一些代表人类行为的属性。之后,为了处理大量的人类行为数据,开发了一种基于网格和密度的简单,可扩展和分布式的并行聚类算法。理论分析和实验结果表明,该算法具有较好的效率和有效性,并在现实数据集上揭示了有价值的发现。此外,本文中用于发现用户角色的方法也可以普遍应用于社交网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号