首页> 外文期刊>Intelligent automation and soft computing >Comparison of different methods for reconstruction of instantaneous peak flow data
【24h】

Comparison of different methods for reconstruction of instantaneous peak flow data

机译:重建瞬时峰值流量数据的不同方法的比较

获取原文
获取原文并翻译 | 示例

摘要

In arid and semi-arid regions, documentary data of past floods remain justly rare and highly fragmentary in most cases. Existence of many effective parameters on maximum flood discharge and the complex relationships between them is an important challenge in the reconstruction of these data and hence, it limited the application of traditional methods. In this paper, an alternative approach (i.e. artificial intelligence methods) has been evaluated to determine the interactive relations of them. To this end, flow data was collected from 29 gauging stations in the central part of Iran for the period 1965 to 2007. Following quality and homogeneity controls of the data, reconstruction of instantaneous peak flow time series were made using maximum daily data by four different methods; regression method (REG), artificial neural network (ANN), genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS). Results showed that in all studied stations, ANFIS reconstructs instantaneous peak flow values with the highest accuracy among the four tested methods.
机译:在干旱和半干旱地区,过去洪水的文献数据仍然很少,而且在大多数情况下是高度分散的。最大洪水流量中许多有效参数的存在以及它们之间的复杂关系是重建这些数据的重要挑战,因此限制了传统方法的应用。在本文中,已经评估了一种替代方法(即人工智能方法)来确定它们之间的交互关系。为此,从1965年至2007年期间从伊朗中部的29个计量站收集了流量数据。在对数据进行质量和均质性控制之后,使用四个不同的每日最大数据重建了瞬时峰值流量时间序列。方法;回归方法(REG),人工神经网络(ANN),遗传算法(GA)和自适应神经模糊推理系统(ANFIS)。结果表明,在所有研究的站点中,ANFIS都以四种测试方法中的最高精度重建了瞬时峰值流量值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号