首页> 外文期刊>Intelligent automation and soft computing >An Improved Lung Sound De-noising Method by Wavelet Packet Transform with Pso-Based Threshold Selection
【24h】

An Improved Lung Sound De-noising Method by Wavelet Packet Transform with Pso-Based Threshold Selection

机译:基于Pso阈值选择的小波包变换改进的肺声降噪方法

获取原文
获取原文并翻译 | 示例

摘要

Lung abnormalities and respiratory diseases increase with the development of urban life. Lung sound analysis provides vital information of the present condition of the pulmonary. But lung sounds are easily interfered by noises in the transmission and record process, then it cannot be used for diagnosis of diseases. So the noised sound should be processed to reduce noises and to enhance the quality of signals received. On the basis of analyzing wavelet packet transform theory and the characteristics of traditional wavelet threshold de-noising method, we proposed a modified threshold selection method based on Particle Swarm Optimization (PSO) and support vector machine (SVM) to improve the quality of the signal, which has been polluted by noises. Experimental results show that the recognition accuracy of de-noised lung sounds by the improved de-noising method is 90.03%, which is much higher than by the other traditional de-noising methods. Meanwhile, the lung sound processed by the proposed method sounds better than by other methods. All results make it clear the modified threshold selection can obtain a better threshold vector and improve the quality of lung sounds.
机译:肺异常和呼吸系统疾病随着城市生活的发展而增加。肺音分析提供了肺部当前状况的重要信息。但是肺部声音在传输和记录过程中很容易受到噪声的干扰,因此不能用于疾病诊断。因此,应处理噪声声音以减少噪声并提高接收信号的质量。在分析小波包变换理论和传统小波阈值降噪方法的特点的基础上,提出了一种基于粒子群算法(PSO)和支持向量机(SVM)的改进阈值选择方法,以提高信号质量。 ,已被噪音污染。实验结果表明,改进的去噪方法对肺噪声的识别精度为90.03%,远高于其他传统的去噪方法。同时,所提方法处理后的肺音听起来比其他方法要好。所有结果都清楚表明,修改后的阈值选择可以获取更好的阈值向量,并改善肺音质量。

著录项

  • 来源
    《Intelligent automation and soft computing》 |2018年第2期|223-229|共7页
  • 作者单位

    Third Mil Med Univ, State Key Lab Trauma Burns & Combined Injury, Daping Hosp, Surg Inst, Chongqing 400042, Peoples R China;

    Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China;

    Third Mil Med Univ, State Key Lab Trauma Burns & Combined Injury, Daping Hosp, Surg Inst, Chongqing 400042, Peoples R China;

    Third Mil Med Univ, State Key Lab Trauma Burns & Combined Injury, Daping Hosp, Surg Inst, Chongqing 400042, Peoples R China;

    Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China;

    Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China;

    Third Mil Med Univ, State Key Lab Trauma Burns & Combined Injury, Daping Hosp, Surg Inst, Chongqing 400042, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lung sound signal processing; wavelet packet threshold de-noising; threshold selection; particle Swarm Optimization; SVM;

    机译:肺声信号处理;小波包阈值降噪;阈值选择;粒子群优化;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号