首页> 外文期刊>Intelligent automation and soft computing >A Pursuit of Sustainable Privacy Protection in Big Data Environment by an Optimized Clustered-Purpose Based Algorithm
【24h】

A Pursuit of Sustainable Privacy Protection in Big Data Environment by an Optimized Clustered-Purpose Based Algorithm

机译:通过优化的聚类目的算法追求大数据环境中的可持续隐私保护

获取原文
获取原文并翻译 | 示例

摘要

Achievement of sustainable privacy preservation is mostly very challenging in a resource shared computer environment. This challenge demands a dedicated focus on the exponential growth of big data. Despite the existence of specific privacy preservation policies at the organizational level, still sustainable protection of a user's data at various levels, i.e., data collection, utilization, reuse, and disclosure, etc. have not been implemented to its spirit. For every personal data being collected and used, organizations must ensure that they are complying with their defined obligations. We are proposing a new clustered-purpose based access control for users' sustainable data privacy protection in a big data environment. The clustered-purpose based access control significantly contributes to handling the personal data for stated, unambiguous, and genuine purposes. The proposed algorithm picks specific records from the sample space. It ensures the sustainability and utilization of data for intended purposes by validating the existing privacy tags, assigning new privacy tags based on a clustered-purpose based approach. The proposed method equally ensures the security and sustainable privacy aspects of existing as well as new personal data managed inside large databases repositories. The comparative analysis of significant results presents the outperformance of the proposed algorithm as compared to existing non-purpose based conventional methods of sustainable privacy preservation. The proposed algorithm clusters the large datasets in a big data environment and allows only authorized access to users. The current study is limited to purpose-based access control based on privacy tags. However, future research can also consider other types of privacy protection scenarios in a shared environment.
机译:在资源共享计算机环境中,可持续隐私保护的成就大多是非常具有挑战性的。这一挑战要求专注于大数据的指数增长。尽管在组织级别存在特定的隐私保留政策,但仍然可持续保护用户数据在各个层面,即数据收集,利用,重用和披露等方面尚未实施其精神。对于收集和使用的每个个人数据,组织必须确保他们遵守其定义的义务。我们在大数据环境中提出了一种新的集群基于群集的访问控制,以便用户在大数据环境中的可持续数据隐私保护。基于聚类的访问控制显着促进处理陈述,明确和真正目的的个人数据。所提出的算法从采样空间中选择特定的记录。它通过验证现有的隐私标签来确保对预期目的的数据的可持续性和利用率,基于基于集群目的的方法分配新的隐私标签。该提出的方法同样可确保现有的安全性和可持续的隐私方面以及在大型数据库存储库内管理的新个人数据。与现有的可持续隐私保存方法相比,显着结果的比较分析呈现了所提出的算法的表现。该算法在大数据环境中群集大型数据集群群体,允许仅授权访问用户。目前的研究仅限于基于隐私标签的基于目的的访问控制。但是,未来的研究还可以考虑共享环境中的其他类型的隐私保护情景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号