首页> 外文期刊>Intelligent automation and soft computing >The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection
【24h】

The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection

机译:稀疏重建算法在改进视力检测中改进背景词典的应用

获取原文
获取原文并翻译 | 示例

摘要

In the paper, we apply the sparse reconstruction algorithm of improved background dictionary to saliency detection. Firstly, after super-pixel segmentation, two bottom features are extracted: the color information of LAB and the texture features of the image by Gabor filter. Secondly, the convex hull theory is used to remove object region in boundary region, and K-means clustering algorithm is used to continue to simplify the background dictionary. Finally, the saliency map is obtained by calculating the reconstruction error. Compared with the mainstream algorithms, the accuracy and efficiency of this algorithm are better than those of other algorithms.
机译:在论文中,我们将改进的背景词典的稀疏重建算法应用于显着性检测。首先,在超像素分割之后,提取两个底部特征:通过Gabor滤波器的实验室的颜色信息和图像的纹理特征。其次,凸壳理论用于删除边界区域中的对象区域,并且k均值群集算法用于继续简化背景字典。最后,通过计算重建误差来获得显着性图。与主流算法相比,该算法的准确性和效率优于其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号