首页> 外文期刊>Intelligent automation and soft computing >A Recommendation Approach Based on Product Attribute Reviews: Improved Collaborative Filtering Considering the Sentiment Polarity
【24h】

A Recommendation Approach Based on Product Attribute Reviews: Improved Collaborative Filtering Considering the Sentiment Polarity

机译:基于产品属性评论的推荐方法:考虑情感极性的改进的协同过滤

获取原文
获取原文并翻译 | 示例

摘要

Recommender methods using reviews have become an area of active research in e-commerce systems. The use of auxiliary information in reviews as a way to effectively accommodate sparse data has been adopted in many fields, such as the product field. The existing recommendation methods using reviews typically employ aspect preference; however, the characteristics of product reviews are not considered adequate. To this end, this paper proposes a novel recommendation approach based on using product attributes to improve the efficiency of recommendation, and a hybrid collaborative filtering is presented. The product attribute model and a new recommendation ranking formula are introduced to implement recommendation using reviews. Experimental results show that the proposed method outperforms baselines in terms of sparse data.
机译:使用评论的推荐人方法已经成为电子商务系统中积极研究的领域。在许多领域(例如产品领域)已采用在评论中使用辅助信息作为有效容纳稀疏数据的方法。现有的使用评论的推荐方法通常采用方面偏好。但是,产品评论的特征并不足够。为此,本文提出了一种基于产品属性的新型推荐方法,以提高推荐效率,并提出了一种混合协同过滤方法。引入了产品属性模型和新的推荐排名公式,以使用评论来实施推荐。实验结果表明,该方法在稀疏数据方面优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号