首页> 外文期刊>Intelligent automation and soft computing >On the Use of Genetic Algorithm for Solving Re-entrant Flowshop Scheduling with Sum-of-processing-times-based Learning Effect to Minimize Total Tardiness
【24h】

On the Use of Genetic Algorithm for Solving Re-entrant Flowshop Scheduling with Sum-of-processing-times-based Learning Effect to Minimize Total Tardiness

机译:基于遗传算法求解重入流水作业调度与基于处理时间的学习效应以使总时延最小化

获取原文
获取原文并翻译 | 示例

摘要

Most research studies on scheduling problems assume that a job visits certain machines only one time. However, this assumption is invalid in some real-life situations. For example, a job may be processed by the same machine more than once in semiconductor wafer manufacturing or in a printed circuit board manufacturing machine. Such a setting is known as the "re-entrant flowshop". On the other hand, the importance of learning effect present in many practical situations such as machine shop, in different branches of industry and for a variety of corporate activities, in shortening life cycles, and in an increasing diversity of products in the manufacturing environment. Inspired by these observations, this paper addresses a re-entrant m-machine flowshop scheduling problems with time-dependent learning effect to minimize the total tardiness. The complexity of the proposed problem is very difficult. Therefore, in this paper we first present four heuristic algorithms, which are modified from existing algorithms to solve the problem. Then, we use the solutions as four initials to a genetic algorithm. Finally, we report experimental performances of all the proposed methods for the small and big numbers of jobs, respectively.
机译:关于调度问题的大多数研究假设工作只能访问某些机器。但是,此假设在某些现实情况下是无效的。例如,在半导体晶片制造或印刷电路板制造机器中,同一机器可以多次处理作业。这样的设置称为“重入流程商店”。另一方面,学习效果的重要性存在于许多实际情况中,例如机械车间,不同行业的分支机构以及各种公司活动,缩短生命周期以及在制造环境中增加产品的多样性。受这些观察的启发,本文提出了具有时变学习效应的可重入m机流水车间调度问题,以最大程度地减少总拖延时间。所提出问题的复杂性非常困难。因此,在本文中,我们首先提出四种启发式算法,这些算法是对现有算法进行修改而解决的。然后,我们将解决方案用作遗传算法的四个缩写。最后,我们报告了所有建议的方法分别针对少量和大量工作的实验性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号